Kernighan-Lin
这是一个启发式的(heuristic)的解决图分割问题的算法.
Kernighan-Lin是一个O(n2log(n))的解决图分割问题的启发式算法(heuristic algorithm)
G(V,E)表示一个图,V表示节点集合,E表示边的集合.Kernighan-Lin算法试图找到一个分割(partition)将V分成不相连(disjoint)的两个子集A和B.且A和B大小相同,满足A和B之间的边的权重之和T最小.Ia表示a的内部消耗.也就是a和A中的其它节点之间边的权重的和.Ea表示a的外部消耗,也就是a和B中节点间的边的权重的和.更进一步
Da=Ea-Ia
表示外部消耗和内部消耗的差.如果a和b是可交换的,那么消耗的减少就是
Told-Tnew=Da+Db-2ca,b
其中ca,b是a和b之间所有可能边的消耗总和.
这个算法试图找到一个A和B元素之间的最优的可交换操作序列,使得Told-Tnew最大,且产生一个A和B之间的分割.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16 function Kernighan-Lin(G(V,E)):
determine a balanced initial partition of the nodes into sets A and B
do
compute D values for all a in A and b in B
let gv, av, and bv be empty lists
for (n := 1 to |V|/2)
find a from A and b from B, such that g = D[a] + D[b] - 2*E(a, b) is maximal
remove a and b from further consideration in this pass
add g to gv, a to av, and b to bv
update D values for the elements of A = A \ a and B = B \ b
end for
find k which maximizes g_max, the sum of g[1],...,g[k]
if (g_max > 0) then
Exchange av[1],av[2],...,av[k] with bv[1],bv[2],...,bv[k]
until (g_max <= 0)
return G(V,E)